NEW TECHNOLOGY FOR POWER PLANTS

NEW TECHNOLOGY FOR POWER PLANTS

 

“Results of the Experimental Verification of a Technology

of Control over  The Heat Capacity of Water at the Shop

of Water Preparation of the Kurachovskaya Power Plant

V.G. Krasnobryzhev

 

            From November 17 till December 15, 1997, we carried out the experimental verification of a technology of control over the heat capacity of water at the shop of water preparation of the Kurakhovskaya hydroelectric power plant aimed at the acceleration of the heating of water in heat exchangers.

 

The purpose of the experimental verification is

  1. The determination of a change of the thermal energy of water under its heating in the standard and experimental modes as a function of the temperature of steam supplied in heat exchangers.

 

Object of studies:

Softened water supplied to heat exchangers of points of softening water PSW -1 and PSW -2 at the shop of water preparation.

 

Measured parameters:

1) Q – discharge of water through the heat exchangers, m3/h;

2) Тin –temperature of water at the input of a heat exchanger, 0С;

3) Тout –temperature of water at the out put from a heat exchanger, 0С;

4) Рsteam – pressure of steam supplied to the heat exchangers, atm.

 

Recalculated parameters:

Тsteam –temperature of of steam supplied to the heat exchangers, which is determined by the pressure of steam by M.P. Vakulovich’s method.

           

Calculated parameters:

  • Change of the temperature of water under the heating in heat exchangers,

 

∆Т  =   Toutput Tinput

 

2)   Change of the thermal energy of water under its heating,

 

∆Еwater   =   Q • ∆Т

 

3) Change of a thermodynamic parameter, namely the entropy flow (the daily mean value).

∆Еwater / Тpairs   =   ∆S

 

Schematic diagram of the technology and the order of the execution of experiments

 

The technology is based on specific spin interactions, which are revealed in the transmission of an ordered orientation from one system of nuclear spins to another one and in the spontaneous establishment of a single “weighted-mean” spin coherence.

The verification of the technology was realized by the following scheme (Fig. 1).

On the pipeline supplying softened water to heat exchangers PSW-1 and PSW-2, we mounted chip-inductor 4, which is connected with chip-translator 3 by the channel of quantum connection described by the physics of entangled quantum states. The chip-translator was positioned in the resonator of spin states 2 connected with a generator of spin states (GSS) 1 .

Fig. 1. Scheme of water softening at the shop of water preparation.

 

1 – generator of spin states (GSS), 2 – resonator of spin states,

3 – chip-translator, 4 – chip-inductor, 5 – control over the temperature of water on the input of

PSW -1 and -2, 6 – control over the temperature of water on the output of PSW -1 and -2.

 

The control period (operation in the standard mode) was from November 17 till November 24. On November 25, we switched-on the GSS, and water supplied to PSW-1 and -2 was transferred in the coherent state. On December 3, the System of coherentization of water was switched-off, and water was returned in the equilibrium state.

The measurement of the temperature of water on the input and the output of WSP-1 and -2 was executed with the help of a thermovisor “Tsiklop”. By the pressure of steam supplied to PSW -1 and -2, we determined its temperature by Vakulovich’s method.

 

The results of measurements and calculations are given in Table 1.

Table 1

 

Date

 

 

measuring

time

The temperature of water, 0С difference of temperat., 0С water consu-mption,

m3/h

 

∆Еwater,

GCal/m3

 

pressure

of pair,

atm

 

temperture of pair,

0С

thermo-dynamic

indicator Еwater/Тpair

on input to PSW on output

to PSW

1 2 3 4 5 6 7 8 9 10
Water in equilibrium state
 

17.11

10-00 34,5 54,7 20,2 250 5,05 6,0 158,08 0,032
12-00 34,8 54,9 20,1 250 5,025 5,8 156,76 0,032
14-00 30,6 55,0 24,4 270 6,588 4,2 144,68 0,0455
16-00 28,3 45,0 16,7 280 4,676 4,8 149,59 0,0312
averages per day 5,335   152,3 0,035
 

18.11

9-00 35,8 57,0 21,2 259 5,3 6,8 163,01 0,0325
11-00 36,2 57,5 21,3 250 5,325 6,8 163,01 0,0326
13-00 34,7 57,1 22,4 230 5,125 6,8 163,01 0,0314
15-00 34,8 56,9 22,1 210 4,641 6,8 163,01 0,0285
averages per day 5,098   163,01 0,0312
11-00 36,7 59,5 22,8 215 4,902 7,0 164,17 0,0298
19.11 13-00 35,2 57,8 22,6 223 5,04 7,0 164,17 0,0307
15-00 30,1 58,3 28,2 260 7,332 7,0 164,17 0,0447
averages per day 5,67   164,38 0,0345
1 2 3 4 5 6 7 8 9 10
 

20.11

9-00 32,9 56,8 23,9 225 5,377 6,2 159,36 0,0337
11-00 35,5 59,1 23,6 195 4,6 6,4 160,61 0,0286
13-00 35,0 56,7 21,7 181 3,927 6,4 160,61 0,0205
15-00 33,1 55,3 22,2 170 3,774 6,4 160,61 0,0235
averages per day 4,42   160,3 0,0276
 

21.11

9-00 32,4 50,1 17,7 275 4,867 5,6 155,41 0,0313
11-00 32,4 46,5 14,1 270 3,807 4,8 149,59 0,0254
13-00 30,2 48,2 18,0 250 4,5 5,2 152,59 0,0295
15-00 29,5 47,7 18,2 250 4,55 5,1 152,0 0,0299
averages per day 4,43   152,4 0,029
 

24.11

9-00 33,9 55,5 21,6 270 5,832 7,2 165,31 0,0353
11-00 34,0 55,5 21,5 260 5,59 7,2 165,31 0,0338
13-00 33,3 56,2 22,9 260 5,954 7,2 165,31 0,036
15-00 27,8 50,9 23,1 270 6,237 7,4 166,42 0,0375
averages per day 5,9   165,6 0,0356
The average indicators for the control period 5,144   159,61 0,0322
Water in coherent state
 

25.11

9-00 WSP is disabled
11-00 WSP is disabled
13-00 17,8 43,9 26,1 270 7,047 6,8 163,01 0,0432
15-00 17,5 43,4 25,0 270 6,993 6,5 161,0 0,0434
averages per day 7,02   162,0 0,0433
 

26.11

9-00 18,5 48,6 30,1 260 7,826 6,2 159,36 0,0491
11-00 23,8 45,5 21,7 255 5,533 5,6 155,41 0,0356
13-00 25,5 48,0 22,5 255 5,737 5,4 154,02 0,0372
15-00 24,9 48,4 23,5 250 5,875 5,9 157,0 0,0374
averages per day 6,24   156,45 0,0399
 

27.11

9-00 20,9 38,0 17,1 300 5,13 5,0 151,11 0,0339
11-00 23,1 44,2 21,1 265 5,59 5,8 156,76 0,0356
13-00 24,2 48,7 22,5 250 6,125 7,4 166,42 0,0368
15-00 25,4 48,5 23,5 265 6,121 6,9 164,0 0,0373
averages per day 5,74   159,6 0,0359
 

28.11

9-00 24,4 48,8 24,4 300 7,32 7,3 166,0 0,0441
11-00 27,4 50,2 22,8 280 6,384 7,5 167,0 0,0382
13-00 29,9 49,8 19,9 290 5,77 6,4 160,61 0,0359
15-00 30,2 48,3 18,1 295 5,34 6,1 159,0 0,0336
averages per day 6,2   163,15 0,038
 

01.12

9-00 24,1 43,7 19,6 285 5,586 6,6 161,82 0,0345
11-00 25,5 45,9 20,4 290 5,916 6,7 162,0 0,0365
13-00 26,6 55,8 29,2 260 7,592 7,0 164,17 0,0462
15-00 26,9 52,9 26,0 250 6,5 7,0 164,17 0,0396
averages per day 6,4   163,0 0,0392
 

02.12

9-00 27,1 46,2 19,1 305 5,825 5,6 155,41 0,0375
11-00 26,3 44,3 18,0 280 5,04 5,4 154,02 0,0327
13-00 26,5 47,0 20,5 295 6,047 6,1 159,0 0,038
15-00 WSP is disabled
averages per day 5,637   156,14 0,0361
The average indicators of the experimental period 6,157   160,06 0,0384

 

Conclusions

 

  1. The experimental verification of the technology of control over the heat capacity of water under its heating at the shop of water preparation of the Kurakhovskaya hydroelectric power plant indicates that the mean increase of the thermal energy of water during the period of experiments (25.11 – 02.12) relative to that in the control period (17.11 — 24.11) was equal to

 

η  =  [(∆Еexp      ∆Еcontr) / ∆Еexp    ] · 100%  =

 

=  [(6,157  —  5,144) / 6,157] · 100%  =  16,4%

 

where ∆Еexp and ∆Еcontr —  mean values of changes of the thermal energy of water during the period of experiments (Table 1, row 4) and the control period (Table 1, row 3).

 

  1. Krasnobryzhev,

 

e-mail: vkentron@gmail.com

tel. +380975609593.